

PCAI

BBaacckk ttoo BBaassiiccss ––
BBaacckkwwaarrdd CChhaaiinniinngg:: EExxppeerrtt SSyysstteemm FFuunnddaammeennttaallss

Introduction

Backward chaining is an inc
powerful yet widely misunderstood c
key to building many types of expert
particularly well suited for interactive
emulate the conversion between a use
expert. Backward chaining enables s
what question to ask and when. It fac
dismantling of complex problems int
defined sections, which the system au
if needed. An understanding of backw
fundamental to building an expert sys
most popular development shells.

Since it is easy to implemen
chaining is the default method of ope
expert system tools. If the system mu
value of a variable, and a rule for der
exists, backward chaining can autom
the rule to obtain the value. If this rul
additional information before it can s
system can execute additional rules, r
necessary. Unfortunately, this simplic
implementation enables developers to
systems without fully considering the
inference engine; often negatively aff
performance and efficiency.

Goal Driven, another comm
for describing backward chaining, ref
method used to process the rules. Da
other common approach, is associate
Chaining. These terms add confusion
how the inference engine uses the rul
any required system architecture. A b
chaining system can be driven by a b
supplied at the start – and there are o
reasons to do so. Likewise, a data dri
appear to interact with the user in a m
a backward chaining system.

Goal Driven System

A goal driven system alway
to attempt to complete. This list, whi
fundamental to backward chaining, d
new goals to its top, pushing the othe
the list. A key concept is the system o
the top goal, which once achieved dr
and the next goal becomes the top an

BByy DDuussttiinn HHuunnttiinnggttoonn
 16.4

redibly
oncept, yet it is
 systems. It is
 systems that
r and a human
ystems to know
ilitates the

o small, easily
tomatically uses
ard chaining is
tem with the

t, backward
ration in many
st determine the
iving that value
atically execute
e requires
ucceed, then the
ecursively if
ity of
 implement
 operation of the
ecting

only used term
ers to the

ta Driven, the
d with Forward
; referring to
es, and not to
ackward
lock of data
ften good
ven system may
anner similar to

s has a Goal List
ch is
ynamically adds
r goals down in
nly works on

ops off the list
d active goal.

The system is finished once it removes all goals from
the list.

The inference engine actively attempts to
achieve the top goal, which usually requires the
determination of a value for a variable. To obtain that
value, the inference engine checks the rules to
establish if any could derive a value for that variable.
This requires an If/Then rule that assigns a value to
the variable in the THEN part of the rule. If such a
rule is found, that rules IF portion is tested to
determine if it is true.

Determining whether the IF portion is true
typically requires data for other variables. Values for
these other variables may already be available,
making it possible to determine if the rule is true or
false. Alternatively, if the value needed to evaluate
the rule is unknown, then that variable becomes the
new top-level goal and the inference engine looks for
the rules that might assign it a value. This is one way
the system dynamically adds new goals (variables) to
the top of the goal list.

If no rule is available to assign a value to the
top-level goal variable, the system asks the user
directly. The user’s input sets the value of that goal
variable, dropping it off the goal list. The next goal in
the list becomes the top goal, with this additional
information to try to achieve that goal. This process
continues with the adding and removing of goals
from the list until all goals are gone.

Simple Example

The following example shows how
backward chaining adds goals to the goal list, and
how it can make a system modular. The sample
system helps first-level support staff prioritize
support requests by ensuring that certain customers
receive priority service and a response within 4
hours.

When building a Backward Chaining
system, start with the highest-level rules and add
additional detailed rules. At the highest level, the
system is one rule:

 IF
 The customer should receive priority service
 THEN
 Call within 4 hours

Typically, a command in the expert system
defines the initial top-level goal. In this case, it is:
“Determine if the response should be within 4 hours.”

service can ask the user more appropriate questions
and derive needed information.

In this case, add 3 rules that identify a priority
customer:

Goal List:
 1. Determine if the response should be within 4 hours

The system looks through the rules (only 1

rule so far) to find rules with the top goal in the
THEN part. This rule is tested since it could
potentially set the value for the goal.

To determine if the relevant rule is true, and
can set a value for the goal, the system must
determine whether the IF conditions are true. That
requires determining whether "The customer should
receive priority service”, which becomes the new
Top-Level Goal.

 IF
 The customer purchases are over $250,000
per year
 THEN
 The customer should receive priority service

 IF
 The customer works for a Partner company
 THEN
 The customer should receive priority service
 IF
 The customer's company has significant
growth potential
 THEN
 The customer should receive priority service
Goal List:
 1. Determine if the customer is a Priority customer
 2. Determine if the response should be within 4 hours
PCAI

Remember, ONLY the top-level goal

matters to the system. The inference engine
temporarily stops trying to set a value for the
"Respond in 4 hours" goal, and concentrates on the
new top Goal, "Priority customer".

Since there are no other rules in the sample
system, there is no way of deriving the value so the
system must ask the end user. Once the user answers
the question, the system knows the value for "The
customer should receive priority service", and that
goal drops off the Goal list. The Goal list returns to
the original goal of determining if the response
should be within 4 hours. If the system determines
that this is a priority customer, the one rule in the
system determines the value for that Goal, and the
session is complete. If it cannot determine that this is
a priority customer, there are no rules in the system
for setting a value for the “respond in 4 hours”
variable.

Simple Example – Adding Clarification

In reality, asking the typical first-level
support staff if “The customer should receive priority
service” is not reasonable. The staff typically does
not have the background or corporate knowledge to
answer correctly and consistently. The system needs
additional rules to establish this value based on lower
level questions, which the intended user can answer
correctly and consistently.

The addition of more specific rules, which
the inference engine automatically uses, makes the
system much more capable and less subjective. Rules
specifying when a customer should receive priority

When the system runs, the same initial goal

starts the system. The inference engine finds this first
rule and tests it, setting the new Top-Level Goal to
determine if the customer is a “priority customer.”

The system now has rules to determine if the
customer is a priority customer instead of directly
asking the user.

The engine tests each rule in order. The first rule
found is:

 IF

The customer purchases are over $250,000
per year
 THEN

The customer should receive priority service

The IF condition in that rule becomes the new top-
level Goal:

r
$
s
e
r
h
s

Goal List:
 1. Determine if the purchases are over $250,000
 2. Determine if the customer is a Priority customer
 3. Determine if the response should be within 4 hours
16.4

The system automatically searches for any
ule that would set a value for the "Purchases over
250,000" variable. Since no such rule exists, the
ystem must obtain the data from the user or an
xternal source such as a database. This is a more
easonable question to ask a user, particularly if they
ave access to a sales database and can check the
ales volume. In practice, an expert system would

PCAI 16.4

automatically determine this answer by interfacing
directly to external databases.

If the request for sales volume returns the
customer’s purchases are $20,000, this determines
the variable value, the top-level goal on purchase
amount is now satisfied, and it drops off the Goal
List. It des not matter that the rule that put the goal on
the list is false; the system is only working on the
top-level goal.

The next Goal in the list, "Priority

Customer" again becomes the Top Level Goal and
the associated rule becomes the rule to be tested.

 IF

The customer purchases are over $250,000
per year

 THEN
The customer should receive priority service

Based on the value of the customer's

purchases of $20,000, the rule can be determined to
be false, so it will not fire or indicate anything about
the Top-Level Goal variable. This rule is of no value
in achieving the top-level goal. However, there is
another rule in the system that also provides
information on the top-level Goal variable:

 IF

The customer works for a Partner company
 THEN

The customer should receive priority service

The variable used in the IF part of that rule
becomes the new Top-Level Goal.

There are no other rules that allow

the engine to derive "Partner Company", so
it asks if the customer works for a Partner
company. This is a reasonable question to
ask since the number of partner companies is
probably reasonably small.

In this example, assume that the
customer is not from a Partner company, so
it drops that top Goal. After the Partner

company rule, the next rule to test is:
 IF

The customer's company has significant
growth potential

 THEN
The customer should receive priority service

Since the typical first level support operator

may not know the answer, the system needs a few
additional rules to explain which customers have
“significant growth potential”. The Sales Manager
could write a few rules describing how to identify a
company with significant growth potential. These
add the Sales Manager knowledge, on his specific
aspects of the problem, to the system. These might
be rules such as:

 IF

The company is a Fortune 100 company
 THEN

The customer's company has significant
growth potential

 IF
The company has been a customer for many
years

 THEN
The customer's company has significant
growth potential

To determine if the customer’s company has

significant growth potential, the engine automatically
calls these new rules which asks the user more
objective questions. As mentioned before, in a real
system this data might come from other sources such as
a database with information on customer companies.

Goal List:
 1. Determine if the customer is a Priority customer
 2. Determine if the response should be within 4 hours

Goal List:

 1. Determine if customer is from a Partner company
 2. Determine if the customer is a Priority customer
 3. Determine if the response should be within 4 hours

 IF
The customer should
receive priority service

 THEN
Elevate to top-level support
staff and call within 4 hours

IF
The customer purchases are over $250,000 per
year

 THEN
 The customer should receive priority service

 IF
 The customer works for a Partner company
 THEN
 The customer should receive priority service

 IF
 The customer's company has significant growth
 potential
 THEN
 The customer should receive priority service

 IF
 The company is a Fortune 100 company
 THEN
 The customer's company has
 significant growth potential

 IF
 The company has been a customer for
 many years
 THEN
 The customer's company has significant
 growth potential

Fig. 1 How individual rules call other blocks of rules

PCAI 16.4

Backward Chaining enables the
decomposition of complex problems into smaller
modules. By starting with the highest-level
description that solves the problem, this quickly leads
to the creation of a working system. If the questions
asked by the system are not at the appropriate level
for the intended end user, adding additional rules
enables deriving the information using simpler
questions.

A system can be started with high level rules
describing the decision-making process and expanded
to whatever level is required by adding blocks of
rules that cover specific decision details.

The system can reuse rule blocks in multiple
places. For example, if multiple places in the system
must know if a customer should receive priority
service, perhaps to determine what method to use for
product shipments, the inference engine
automatically invokes the same rule block to derive
the value.

In the future, if there are other criteria to
determine if a customer is a "priority customer",
simply add another rule. The inference engine
automatically calls and tests this new rule in any
relevant situation, making it very easy to add rules
and expand a system.

Comparison of Inference Engines to
Traditional Programming

A backward chaining inference engine
makes system development and maintenance much
easier. When first exposed to IF/THEN rule logic,
they are often confused with the simple IF/THEN
statements of computer languages such as C and
BASIC. However, the inference engine is
fundamentally very different and much more
powerful.

A BASIC program, for example, allows
nested IF/THEN blocks. However, if a program
needs to reuse a complex or deeply nested IF/TTHEN
relationship in another section of the program, it must
duplicate the code, or make it a function. A standard
program cannot simply call the necessary section of
the computer code just because it exists in the system
– yet this is exactly what the inference engine does.

During backward chaining, if any rule
assigns a value to variable X, that rule is
automatically available whenever other rules being
tested need a value of X. Rules can be physically
located anywhere in the system, and there is no
explicit linking of rules. Having two rules use the
same variable is all that the inference engine needs to
link them.

This rather "free-form" nature of the rules
makes development very simple. Provide the
IF/THEN rules necessary to make a decision and tell
the system what to derive, and the inference engine
does the rest. The engine asks questions in a focused
manner, and only asks the relevant questions that it
cannot derive from other rules. It does not ask
unnecessary questions as often seen in traditional
programming.

Programmers might look at the IF/THEN
rules in a simple system, such as those demonstrating
the above concepts, and feel they could program a
similar system in a few lines of Visual Basic. For
very simple systems, that is true. However, if the
system grows even a modest amount, the problem
rapidly becomes very complex to program using
traditional techniques. It requires far more than just
nested IF/THEN statements to handle cases where
there are multiple sources to derive a fact, multiple
uses of the same rules, or many levels of derivation
that may depend dynamically on user input.

Traditional code can rapidly becomes very
complicated when handling any of these situations. It
becomes even more complex when adding new rules
and maintaining the system. Adding a single new rule
can have ripple effects across the entire system and
this is considerably more complex when the
programmer has not seen the code for a while or
someone other than the original programmer is
maintaining it. Implementing a new heuristic using
traditional programming is often quite difficult and if
not added correctly, often has side effects that are
difficult to detect and fix.

For significantly complex systems, the most
efficient approach is separating the rules from the
actual program code and handling the rules more as
data. By writing a program to process the rules as
data, this allows changes to the rules without
changing the program. Changes to the programs that
process the rules do not necessarily affect the rules,

Fig. 2 The role of the Inference Engine in Backward Chaining

PCAI 16.4

and changes to the rules usually do not affect the
program. This partitions the data from the program
and greatly reduces the effects of the changes in one
on the other, and the corresponding testing when
there are rule changes. This is, in effect, an Inference
Engine – though perhaps not a full featured one.

Working with an existing inference engine is
far easier and much more productive. Using a proven
inference engine that has already been tested and
should be relatively error free is similar to using a
well-utilized programming library. Programmers
will benefit by testing done by those that have
already worked with the inference engine on previous
projects. In addition, many of the debugging tools
that simplify rule-level debug are already in the
inference engine where traditional programming
environments assist with code level, not rule-level
debug. Attempting to build a robust knowledge
automation system by traditional programming
techniques is typically much more expensive and far
less likely to succeed or be maintainable.

Forward Chaining

As mentioned earlier, many inference
engines use Forward Chaining. Some expert systems
support hybrid approaches where the basic system
uses forward chaining, but allows backward chaining
to derive needed values. This combination provides
the best of both approaches and is often very
effective.

Conceptually, forward chaining is much
simpler than backward chaining. The system simply
tests the rules in the order that they occur, so rule
order is crucial. If the system needs a variable to
determine if a rule is true or false, and the value of
that variable is unknown, the system immediately
asks the user for the value without any attempt to
derive its value. If it is determined that a rule is true,
the assignments in the rules THEN part add data to
what the system knows and can use in subsequent
rules. If a rule is determined to be false, it discards
that rule.

Forward chaining systems are data driven
since the system simply processes a set of data by the

rules with no specific defined Goal. Forward
chaining is often faster than backward chaining since
it does not have the overhead of dynamically
determining which rule to activate, but it does not
exclude blocks of rules and logic that are not actually
needed. Forward chaining asks less focused questions
and is not as good an emulation of a human
interaction with an expert. Unlike backward chaining
systems, the order of questions in a forward chaining
system is very dependent on rule order.

Programmers often apply a data driven
concept to systems, such as monitoring systems,
where a set of data is available at the start of a
session. The system applies the rule logic to the data
to produce results, but the order in which the system
uses the data does not matter. Programmers often
use forward chaining for these types of systems.
Backward chaining is often a better choice for
problems that benefit by being modularized or
handled from top-level logic down.

Backward chaining systems are often easier
to develop than forward chaining. A human expert
intuitively thinks: "The cause could be X. To
determine that, I need to know the value of Y, but to
find Y, I first need to know Z". This type of logic is
similar to one that a backward chaining system
produces from rules.

Summary

Backward chaining is an effective method
for building any type of system from knowledge
management, to help desk, to diagnostic, to decision
support. With a clear understanding of how
backward chaining operates, systems can be
modularized and rapidly constructed. These systems
can easily combine the expert knowledge of multiple
individuals into a single coherent system. Separating
domain-knowledge (rules) from the program
(inference engine) greatly reduces the amount of
work required to create an effective program. Using
an existing inference engine eliminates the need to
develop a major part of the program from scratch.

	Back to Basics –
	I
	Introduction
	Goal Driven System
	Simple Example
	Simple Example – Adding Clarification
	Comparison of Inference Engines to Traditional Programming
	
	
	Forward Chaining

