

How to Save User Input to a Database by Clicking the Save Button 1

How to Save User Input to a Database
by Clicking a “Save” Button

In some systems, it is desirable to allow the end user to
answer some questions and quit mid-session, with the
ability to return to the same session later. This can be very
useful when the system:

 Asks many questions and takes a long time to run
 Asks a question that the end user may not be able

to immediately answer
 Requires input from several different users, each providing answers to some questions
 Implements a “model” that can be run in a “What-if” mode, changing some of the input values

This approach saves all the user’s input when the user hits a "Save" button, after which they can shut down
their browser or exit the session without any lost input. When the user runs the system again, it will ask if
they want to continue the previous run by recovering the saved data.

Another approach to the problem is to automatically save all user input after they answer each question.
This allows them to just leave the session with no data lost. (Separate “How To” Documents explain how to
implement this approach.) Automatically saving input after each question has a much higher overhead in
data being sent back to the server than that “Save Button” approach. This “Save Button” approach should
be used:

 If systems are to be run using the applet runtime with slow connections
 If the database calls take an excessive time to execute

In most other situations it may be better to use the automatic approach since it does not require any special
user action.

The “Save” button can be easily added to screens in either the Corvid Applet or Servlet runtimes, and set to
trigger running a special Command Block if they are clicked. This allows adding special database
commands in that Command Block to save data and exit the system.

A system demonstrating this “How To” can be
run from the “Save Input From Button” section of:

 http://www.exsys.com/support/howto

The code for the sample system can be
downloaded from the same page.

How to Save User Input to a Database by Clicking the Save Button 2

Running the Sample System
There are both applet and servlet versions of a sample system that illustrates this “How To”. They both ask
the same questions and can be used to save data in the same way.

When you run the system, the first question asks for a User ID. This is used to build a unique identifier for
the saved data. You can enter any string, but to avoid reading/overwriting input from someone else, it must
be unique. Be sure to remember the ID string entered since you will need it to recover the saved data. Your
email address is a good choice for the User ID since it is guaranteed to be unique. (In a production system,
there would be a combination of User ID and Password to assure that each user’s data is protected. That
has not been added to this system to keep it simple.)

The next question asks your name, enter your name or any text string. The system will then ask 2 other
simple questions. The answers provided do not matter since there is no underlying decision-making logic in
the system. On the first time through the system, enter a User ID, name and answer the “Color” question.
When the “Pet” question is asked, click the “Save and Exit” button without answering it. That will save the
data and terminate the run. Then start the system again and enter exactly the same User ID. The system
will tell you that stored data was found for that ID and ask if you wish to recover it. Answer “Yes” and you
will immediately be back to the “Pet” question you left off at. Answer the question, and the results will
display both the input from the first session and the additional input from the second session.

How it Works
This technique saves all the user's answers from the current run (session) and reads that data back when
the user starts another run. The data is stored in a database in a table that has two columns (fields). One
column is the user's ID and the other column holds all the data of the current run (the SessionData).

Saving the input requires some way to identify the specific user so that they can return to the session later.
This can be provided by a login external to the Corvid system or any other approach that produces a unique
ID that the user can provide when they return to the system. The session data will be stored under that ID
which is why it must be unique. In a more complex system, an ID and password could be implemented to
verify the user.

The table holds one row (record) for each user running the KB. When the user runs the KB for the first time,
a new row is created for that user. From then on, that row will be updated every time the user selects to
save the data they have input.

The table will have one row for every user that has ever run the KB. The SessionData will be a string (text)
that contains all the variables in a format that Corvid can read. The format is variable name in [], followed
by its value. It looks similar to:

[name] John Doe
[Color] red
[Pet] dog

All the SessionData will be
a single string that
contains Carriage Return
characters. The required
size (capacity) of the
SessionData column is
dependent upon the
number of variables and
the length of their values.
To be sure SessionData
can hold all the data,
declare it to be of type
BLOB or MEMO.

When the user runs a KB, the KB calls the Command Block “RestoreSession”. It first counts the number of
rows that have this user's ID. This is triggered by the command:

 IF [ss_#SavedSessions] == 1

How to Save User Input to a Database by Clicking the Save Button 3

Since Corvid needs the value of [ss_#SavedSessions], it performs the database call in External Data Source
For Value which has this SQL call:

 SELECT COUNT(UserID) FROM savedsessions WHERE UserID='{E1}'

where {E1} is replaced with the value of [ss_User_ID] but with any quotes escaped. (It is necessary to escape
the quotes of any text inside quotes or ticks.) The count will be either 1 or 0. If it is 0, then it creates a new row
for this user's ID. If it is 1, then it recovers the SessionData, which means it assigns those variables to the
values saved in the database. It reads the SessionData from the database by using this SQL call:

 SELECT SessionData FROM savedsessions WHERE UserID='{E1}'

It creates a new row by using this SQL call:

 INSERT INTO savedsessions VALUES ('{E1}', '')

The SessionData is the empty string ''. It will be assigned something after the first question is answered.

Adding the “Save” Button
The system saves the data when a special “Save” button is clicked. This causes a Command Block to be
executed that saves the user’s input data and exits. The way the “Save” button is added to the system and
associated with the Command Block is different for running with the Applet and Servlet Runtimes.

For the Applet Runtime, the command:

SPECIAL_BUTTON "Save",
"SaveAndExit"

is added to the command block at the point
where the system should start adding the
“Save” button. In this case, that is after
running the “RestoreSession” command
block.

The SPECIAL_BUTTON command adds a
button to the question screen, and when the
user clicks on the button an associated
Command Block is run. The label for the
button can be specified along with the
command block to run. The command block
is usually separate from the ones that
normally fire and only is used if the button is
clicked.

The SPECIAL_BUTTON command is added
from the command builder. Open the
Command Block Command Builder, and
select the “Control” tab. At the bottom of the
window under “Special Commands”, scroll
down to “Special_Button” and select it.
Then enter the label and Command Block
parameters.

How to Save User Input to a Database by Clicking the Save Button 4

The command:

SPECIAL_BUTTON "Save", "SaveAndExit"

will add a “Save” button to the question screen:

For the Servlet, the “Save” button is added by
using the ~EXEC_CMD_BLOCK command.
This is added to the question templates that
should display the “Save” button. It can be
added anywhere on the FORM portion of the
template.

 The syntax is:

<input type="submit" name="~EXEC_CMD_BLOCK=BlockToRun" value="label"></p>

where “BlockToRun” is the name of the command block to execute if the button is clicked, and “label” is the
label for the button. In this system, the command is:

<input type="submit" name="~EXEC_CMD_BLOCK=SaveAndExit" value="Save And Exit"></p>

and it will add a “Save and Exit” button to the question
screen.

Regardless of which approach is used, when the user
clicks the “Save” button, the “SaveAndExit” command
block will be run.

This calls the SaveSession command which is has the
associated SQL command:

 UPDATE savedsessions SET
 SessionData='{E1}' WHERE UserID='{E2}'

with {E2} replaced with the value of [ss_User_ID] and
{E1} replaced with [~DATA_CR]. This SQL command
finds the row for [ss_User_ID] and updates (overwrites)
the SessionData with the text in the pseudo variable:

 [~DATA_CR]

which outputs all of the input provided by the user in a
form that allows Corvid to read it back in.

The EXIT command in the command block then
terminates the session.

Running the Sample System on Your Server

Setting up the Database
Before this technique will work, there must be some database software installed on the server. The
database can be any that supports ODBC or JDBC connections, such as MySql, Access, Oracle, and almost
all other databases.

Create a database named SaveSession and create a table named SavedSessions. You can do so using
these SQL commands:

CREATE DATABASE SaveSession;
USE SaveSession;
CREATE TABLE SavedSessions (UserId CHAR(50) NOT NULL, SessionData BLOB NOT NULL);

How to Save User Input to a Database by Clicking the Save Button 5

The table named SavedSessions should have 2 fields of these types:

 UserId: a CHAR() or similar type that is big enough to hold the largest allowed user
 identification string.

 SessionData: a BLOB or similar type that is huge enough to hold all the variable names and
 their values.

Edit any database command (for example, in the Variables window, select [ss_#SavedSessions] and under
its Options tab click on the Database Cmd button) and click on Edit Connect Data and change the sample
values to your actual values.

Change the Driver and Connection strings to whatever your database requires. If your database is Microsoft
Access or any other ODBC database, use these:

 Driver: sun.jdbc.odbc.JdbcOdbcDriver

 Connection: jdbc:odbc:your_DSN

where "your_DSN" must be replaced with the System DSN name that you created for that database. The
Login and Password are blank unless your database requires them.

You can now test run it independently or merge it into your KB.

To Test Run the Sample System
You need a server that supports servlets. Even if you are running with the Corvid Applet Runtime, it must
call a Servlet to perform the actual database commands. These instructions will assume you are using
Tomcat on your test computer and the host will be localhost on port 8080.

 Copy the folder in the SaveSessionInDBViaButtonApplet.zip file into Tomcat's webapps\ROOT
folder.

 (Files in the webapps\ROOT folder or its subfolders are to be served by Tomcat's web page server.)

 View the contents of the folder webapps\ROOT\HowTo\Applets\SaveSessionInDBViaButton.

 Open the SaveSessionByButton.CVD file.

 If your host or port is not localhost:8080, click on the Properties button and change the host and port
under the Database tab. Also, change the host and port in the Specific URL under the Test Run tab.

 Change the database connection data as explained in the previous section.

All you have to do now is copy the .cdb file to webapps\CorvidDB\ as explained in the next section.

Running the Sample System with the Corvid Applet Runtime
The CorvidDB Servlet must be installed and running to process the database commands. Put the
CorvidDB.war file in Tomcat's webapps folder and either deploy it or restart Tomcat. Put the .cdb file in the
webapps/CorvidDB/ folder. (See the instructions for CorvidDB if you have any problems). In the Properties
window under the Test Run tab, specify the Specific URL to run as an applet. For example, if you put the KB
files in Tomcat's 'webapps/ROOT' in a subfolder named 'SaveSessionInDBViaButton', then the Specific URL
would be:

 http://localhost:8080/SaveSessionInDBViaButton/SaveSessionByButton.html
Under the Database tab in the Applet Runtime grouping, specify the URL for the CorvidDB. It could be
something like:

 http://localhost:8080/CorvidDB/corviddbservlet

Click Done.

Click on the Run button (the blue triangle).
The system should run the same as the applet sample system run off the link on:

 http://www.exsys.com/support/howto

How to Save User Input to a Database by Clicking the Save Button 6

Running the Sample System with the Corvid Servlet Runtime
In the SaveSessionInDBViaButtonServlet.zip file are two folders, "KB" and "base".

 Copy the contents of the "KB" folder into Tomcat's webapps folder.

 You should now have the folder webapps\SaveSessionInDBViaButton\.

 Copy the contents of "base" into Tomcat's webapps\ROOT folder.

 View the contents of the folder webapps\SaveSessionInDBViaButton\.

 Open the SaveSessionByButton.CVD file.

 If your host or port is not localhost:8080, click on the Properties button and change the host and port
in the Specific URL under the Test Run tab. Also, change the host and port under the 'Servlet' tab
for the CORVID_SERVLET and CORVID_LINK_BASE.

 Change the database connection data as explained in a previous section.

The system should run the same as the servlet sample system run off the link on:

 http://www.exsys.com/support/howto

Merge the Sample System Into Your KB
The sample system can also be merged into your system to provide the core functionality to save/recover
input data.

1. Make a copy of the SaveSessionByButton.CVD file and open it.

2. Delete the Logic Block named “Delete this Logic Block” before you Merge.

3. Delete the variable [conf].

4. Delete the variables [name], [color] and [pet].

5. Save the modified copy of SaveSessionByButton.CVD. and exit Corvid.

6. You are ready to merge the systems. Be sure you make a backup copy of your system’s cvd file
and then open your system.cvd file in Corvid editor and under the “File” menu and select “Merge”.
Browse to the copy of the SaveSessionByButton.CVD file that was modified above and select it. It
will be merged into your system file.

7. Copy the first two commands in the Command Block named SampleStartingCmdBlock. Paste them
into your starting command block.

8. Delete the Command Block named SampleStartingCmdBlock.

9. Close all Command Blocks and Logic Blocks and pull down Run and select Set Starting Cmd
Block. Make sure your starting command block is the selected command block.

10. Save the modified, merged system. It will contain the variables and blocks needed to save
sessions.

11. If the system uses the Corvid Servlet Runtime, modify the question templates to add the “Save”
button. This can be done by copying the code from the sample system template.

Note: If the system is modified in a way significantly changes the meaning, names or structure of
variables, the saved session data in the database should be deleted, as it may not match the edited
system.

© Exsys Inc. www.exsys.com

