
 
Save User Input In File  1 

 
Save User Input In File - 
Application 
 
 
 

 
In some systems, it is desirable to allow the end user to answer some 
questions and quit mid-session, with the ability to return to the same 
session later. When running as an applet or servlet and connected on-line to a server, this is done by 
saving the data in a database.  (This is explained other “How To” documents.) However, if the expert 
system will be run as an application with no connection to the Internet and no server, then the user's data 
cannot be stored in a database on a server. Instead, the expert system can store the data on the local 
machine in a file. The sample system shows how to add a push button that saves the user's answers to a 
file and recovers that file the next time the user runs the system.  
 
Must Run as a Java Application 
To save data by writing a local file, the system must run as an Application instead of as an Applet because 
the Java Security Manager will not allow an Applet to write to the local hard drive. 
 
To run as an Application, Java must be installed. Search the hard drive for java.exe. Usually it is in 
C:\Program Files\Java\... or C:\jdk... or C:\jre.... If it is not installed, it can be downloaded for free from:  
 
 http://java.sun.com/ 
 
(This site changes frequently, but look for download of 
the download for the JRE for MS Windows.) 
 
In the Corvid editor, click the “Properties” button and 
under the “Test Run” tab, select the “Application” radio 
button. Click the “Select Java.exe” button and browse 
to the location of java.exe.  
You can now run the system as an Application. You 
must run the sample as an application or it will not work 
correctly.  
 

 

Sample code for the system demonstrating this “How To”  
can be run from the “Save User Input to a File - 
Application” section of: 
 

     http://www.exsys.com/support/howto 
 

Since this is requires running as an Application, it cannot  
run on-line but can be run on the local machine. 

 



 
Save User Input In File  2 

Running the Demo 
To run the sample system, open it in Corvid editor and select to run as an Application with java.exe selected 
as described above.  Click the “Run” button (the blue triangle). The first question asks your User ID.  This 
will be used as the identifier for the file that will eventually hold the input data.  Any text string can be used, 
but when the system is run a second time, the identical string must be entered to recover the data.  The 
string entered will be part of a file name, so use only characters that can appear in a file name: a-z and 0-9 
are safe. 
Since the saved data files are only created by users on this machine, there is less of a chance for users to 
overwrite each others data than for an on-line system.  If the machine will be used by multiple users, unique 
ID strings should be used. 
The system will now ask some other questions.  There is no “decision logic” in the system, so it does not 
matter what input is provided.  The purpose of the demo is to show how input can be saved and recovered.  
This can be added to any system that would have decision-making logic in it.   
The first question is to select a color.  Enter any color, but remember what color was selected.  The second 
question is to select a pet.  At this point, click the “Save” button.  The system will terminate.   
Run the system again.  The first question will again be the User ID string. Reenter exactly the same string as 
on the first run.  If they match, the system will ask if you wish to recover the earlier data, or start a new 
session.  Select to recover the earlier data.  The system will then ask the “pet” question. Select any pet.   
The system will display the Results.  The results screen will show the color that was selected on the first run 
and recovered from the file, along with the pet just selected.   
 
How it Works 
The Save User Input feature saves all the user's answers for the current run (session) in a file and reads that 
data back in next time the user starts a new run. The data is stored in a text file. Since several users could 
use the system at different times, each user’s data must be stored separately. This demo accomplishes that 
by asking for a UserID, which is used as part of the file name to make it unique.  (In a more complex system, 
some more automated UserID could be used, especially if there would be many users running the system 
on the same computer.  The ID could also be used to identify different “projects” that had data stored for the 
same user.) 
 
The main command block starts with the command:  
 
 EXEC BLOCK=Recover User Data 
 
This calls the command block that is responsible for recovering the previous run, if any.  
 
The command:  
 
 SPECIAL_BUTTON "Save", "Save User Data" 
 
causes Corvid to add an extra button 
labeled “Save” to the screens.  If the 
end user clicks on this button, the  
Command Block named “Save User 
Data” will be called to write the user 
data out to a file and exit. (The 
Command Block that is specified in any 
SPECIAL_BUTTON command should 
end or terminate the system. See the 
Corvid manual's discussion of the 
SPECIAL_BUTTON command for limitations on what the command block can do and where it should be 
used.)  
 
Now, examine the Save User Data command block. The command:  
 
 WRITE_NEW [[UserID]].txt, "[[~DATA_CR]]" 
 
writes the file of data, overwriting it if it already exists.  



 
Save User Input In File  3 

The name of the file is defined by an embedded variable [[UserID]] followed by the “.txt” extension.  This 
simple system does not check that [UserID] has only characters that are legal in filenames.  This could be 
added in a more complex system. 
 
Since Corvid will need the value of this embedded variable [UserID] to execute the command, it will ask the 
user for the value. 
 
The data written to the file is the string:  
 

 "[[~DATA_CR]]" 
which is a quoted string that has the value of the special Corvid pseudo variable [~DATA_CR] embedded in 
it.  [~DATA_CR] is not an actual system variable, but when embedded, is replaced by the values of all 
variables that have values, each separated by a carriage return. 
 
Notice that the WRITE command did not specify the folder where the file was to be written. Corvid will write 
the file in the current working directory.  The folder to store the data could be specified in the WRITE_NEW 
command or input by the user as part of the ID string.   To specify precisely where the file will be stored, 
include the full path for the file, such as:  
 
 WRITE_NEW C:\KB_data\user_inputs\[[UserID]].txt, "[[~DATA_CR]]" 
 
where you must replace "C:\KB_data\user_inputs" with the drive and folders where you want the file to be 
written. Corvid will create the new file.  Note:  Corvid will create the specified file, but this command will NOT 
create the folder “C:\KB_data\user_inputs”, so it must already exist before the system is run.  
 
Examine the Recover User Data Command Block. It 
recovers data from a previous run, if any.  
 
The system first checks: 

 exists("[[UserID]].txt") 
 
This will check to see if a file exists under the UserID 
entered.  Since this expression has an embedded 
variable, Corvid will automatically ask the user for the 
value of [UserID], allowing them to specify their file of 
data.  If there is a file of data, the system asks the user if they wish to use it with the command: 
 

 IF RecoverRun = Yes 
 
This uses a static List variable to ask the user if they wish to recover data.  They may either wish to ignore 
the old data and start a new run, they may want to recover the data.  If they select to read the old data, this 
is done with the command: 
 
 READ "[[UserID]].txt" 
 
If you modified the WRITE command to specify the path, you must include the paths here too, like this:  

 
 IF exists("C:\KB_data\user_inputs\[[UserID]].txt") 
and 
 

 READ "C:\KB_data\user_inputs\[[UserID]].txt" 

Open a saved data file and look at the contents, the file has a variable name followed by its value.  The 
name/value pairs are separated by a tab.  The READ command will load the data into the system and 
assign the values to their associated variables.  The system now starts a normal run, which leads to it asking 
for the value for variables.  For those questions where the value is already assigned from the READ 
command, Corvid does not need to ask the user for input and can proceed with the logic.  Since the same 
values input will lead to the same questions, the set of input read from the file will take the user to exactly 
the same point in the system where they left off, with the same rules firing etc.   
 
Note: If the logic or rules in a system is modified, old data files should not be used since they may 
not match the variables in the new system. 



 
Save User Input In File  4 

Merging the Sample System to Add Functionality 
This sample system can be merged with another system to add the functionality of saving input.  This should 
be done with care and only after fully understanding how the system works.  To merge the system with 
another:  
 

 Make a backup copies of your system and the sample system  
 Open the copy of the sample system in Corvid editor 
 Delete “Logic Block 1”  
 Delete the variables [color], [pet], and [conf]  
 Save the copy of the sample system and exit Corvid  
 Open your system in Corvid editor  
 Under the “File” menu and select “Merge”  
 Browse to the modified copy of the sample system and select it to merge 

 
After they are merged, move the first 3 commands from “Example Main” to the starting command block in 
the merged system. You can open both blocks simultaneously and Copy and Paste using the toolbar 
buttons.   You may want to enhance the system by using a different approach to set the UserID. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© Exsys Inc.   www.exsys.com 
 


